Sense of Number Visual Calculation Policy

Expanded Edition for St. Luke's C. of E. Primary School October 2015
 Graphic Design by Doye Godirey Compillod by the Sense of Number Maths Team

For sole use within St. Luke's C. of E. Primary School. "A plicture is worth 1000 wordstl" wMw-senscofnumber.coouk

Gode	Section	Basic Edition (99 Sides)		Expanded Edition (316 Slides)	
		How mony posters?	Slide Nimbers	How mony posters?	Slite Nambers
	Introduction Slides	3	${ }^{1-3}$	3	${ }^{1-3}$
KS	KS: Key Concepts	7	4-10	7	4-10
	Vocabulary Slides	9	11-19	9	11-19
C	Counting Policy	-	-	13	21-33
A	Addition	7	20-26	40	34-73
MA	Mental Addtion	5	27-31	40	74-113
S	Subtraction	11	32-42	33	114-146
MS	Mental Subtraction	-	-	4	147-150
M	Multiplication	9	43-51	32	151-182
MM	Mental Multiplication	1	52	30	183-212
D	Division	14	53-66	41	213-253
	Calculotion Cards	-	-	9	254-262
	Multiplication Tables			11	263-273
	Expanded Edition Progression (Yeer groups for New Curriculum)	13	67-79	12	274-285
	Alternative layouts (Column and Subtraction on a Number Line)	1	86-96	29	285-315

Guide to using a Visual Calculation Policy

The Sense of Number Visual Calculation Policy provides a visual representation of a school's written and mental calculation policy.

Typical uses:
Classoom: The slides are printed out (e.g. A4) and the appropriate slides are displayed within each classroom for continual reference or on a working wall.
Teacher Reference: The slides are printed out (e.g. 9 slides per A4 page) and inserted in the teacher's planning folder.
Parents: The slides are used to communicate to parents the methods being taught and used within school.
Website: Slides from the VCP are inserted on a school's maths webpages.
(Please note: the VCP should not be made available for download)

St. Luke's C. of E. Primary School

KC1: Key Concepts!

Addition

$8+2=10$

"What is 8 add 2?" Answer: 10

"What is 8 subtract 2?" Answer: 6
"The difference between 8 and 2 is 6 "

KC2: Key Concepts!

Multiplication

$8 \times 2=16$

"8 multiplied by 2 " means "8, 2 times" or "2 groups of 8 "

"8 divided by 2" means "How many groups of 2 are there in 8?" Answer: 4
("8 shared into 2 sets is 4")

(\%)

(8)

(8)

Calculation Vocabulary

equivalent to equals
 same value as balance

+Addition xMultiplication
Operations

- Subtroction

Division
©
St. Luke's C. of E. Primary School

Addttion Vocabulary

increase

plus

addition

SUlii

atogether

(5) St. Luke's C. of E. Primary School

Subtraction Vocabulary

count back decrease

-
 difference
 between

5St. Luke's C. of E. Primary School

Multiplication Vocabulary

mutiple

ots of multiply

X
 repeated addition

©
St. Luke's C. of E. Primary School

Division Vocabulary

Addition Calculation

(5) St. Luke's C. of E. Primary School

Subtraction Calculation

©
St. Luke's C. of E. Primary School

Multiplication Calculation

(0)

St. Luke's C. of E. Primary School

Division Calculation

(8)

St. Luke's C. of E. Primary School

Cla: Number Order

The Numbers must be said once and always in the conventional order.

Clb: At a Clance

Subitising

See at a glance how many are in small collections and attach correct number names to such collections.

C2a: Number Match

One to One Correspondence

Each object to be counted must be touched or 'included" exactly once as the numbers are said.

C2b: Counting Objects

Starting Point and Order Irrelevance

The objects can be touched in any order. The starting point and order in which the objects are counted does not affect how many there are.

C2c: Order Astrangement
 Arrangement Irrelevance

The arrangement of the objects does not affect how many there are. (4) St. Luke's C. of E. Primary School

C3: How Many?

Final number is the total

The last number said tells 'how many' in the whole collection. It does not describe the last object touched.

C4: Arranging

Sets of 5

C4a: Arranging

Sets of 5

C4b: Arranging

Sets of 5 (Non Linear)

C4c: Arranging

©
St. Luke's C. of E. Primary School

C5: Counting Forwards

C6: Counting On

C7: Counting Back

C8: Counting in Steps

Al: Objects \& Pictures 1

"If I have $\mathbf{3}$ and then 5 more, how many altogether? Answer: 8"

Ala: Largest Number 1st 1

A2: Counting On 1

A2a: Counting On

 1Bridging 10

(.)

A2b: Counting
 On
 Bridging 10s Number

(8t. Luke's C. of E. Primary School

A3: Forwards Jump

$43+24=67$

$43 \quad 53 \quad 63 \quad 64656667$

A3a: Forwards Jump 2

$57+25=82$

A3b: Forwards Jump 2/3

$86+48=134$

A3c: Forwards Jump

$687+248=935$

(\%)

A3f: Decimal Jump

$4.8+3.8=8.6$

${ }_{5} \mathbf{A} 3 \mathrm{~g}:$ Decimal Jump

$5.65+3.29=8.94$

$\underset{2}{\mathbf{A} 4: ~ P a r t i t i o n i n g ~}$

$$
\begin{array}{r}
43+24=67 \\
40+20=60 \\
3+4=7
\end{array}
$$

A4a: Partitioning

$\underset{2 / 3}{\text { A4b: Partitioning }}$

$86+48=134$

$$
\begin{aligned}
80+40 & =120 \\
6+8 & =\frac{14}{134}
\end{aligned}
$$

A4c: Partitioning

$$
687+248=935
$$

$$
600+200=800
$$ $80+40=120$ $7+8=$

$\underset{5}{\text { A }} 4$ f: Partitioning

$4.8+3.8=8.6$

$$
\begin{aligned}
& 4+3=7 \\
& 0.8+0.8=\frac{1.6}{8.6}
\end{aligned}
$$

A5: Partition Jot 2

A5a: Partition Jot 2

A5b: Partition Jot 2/3

$86+48=134$ $120+14$

A5c: Partition Jot 3

$687+248=935$

$800+120+15$

A5d: Partition Jot 4

${ }_{5} \mathbf{A 5 f : ~ P a r t i t i o n ~ J o t ~}$

$4.8+3.8=8.6$

(\%)
$\underset{5}{\mathbf{A} 5 g: ~ P a r t i t i o n ~ J o t ~}$

$$
\begin{aligned}
& 5.65+3.28=8.94 \\
& 8+0.8+0.1
\end{aligned}
$$

A5h: Partition Jot

$76.7+58.5=135.2$

A5i: Partition Jot
$€ 38.25+£ 27.46=£ 65.71$

(A6: Expanded Column)

(A6: Expanded Column)

A6: Expanded Column
300
687
$+\frac{248}{15}$
120
$\frac{800}{935}$

(A7: Column Addition)

2 Additional

(A7: Column Addition)

2 Additional:a

(A7: Column Addition)
 2/3 Additional:b

A7: Column Addition 3

$100 \quad 10 \quad 1$

A7d: Column Addition 4

©

A7e: Column Addition 5

(5) St. Luke's C. of E. Primary School

A7f: Column Addition
 5

A7g: Column Addition

A7h: Column Addition 5

© St. Luke's C. of E. Primary School

A7i: Column Addition 5

A7 j: Column Addition

$$
73.4+\underset{\text { no }}{5.67}=79.07
$$

MA1: Partitioning

${ }_{2}$ MA1: Partitioning

$43+21=64$

MA1: Partitioning

MA1: Partitioning

©

MA1: Partitioning

©

MA1: Partitioning

$4.73+2.21=6.94$

©

MA2: Counting On

(.)

MA2a: Counting On 1

©

MA2b: Counting On

(\%)

MA2a: Counting On 2

(8)

MA2b: Counting On

$58+40=98$

©

MA2a: Counting On

MA2b: Counting On

$534+300=834$

©

MARa: Counting On

$784+60=844$
 $+60$

©

MA2b: Counting On 4

$4837+3000=7837$

MA2a: Counting On

$837+500=1337$

MA2b: Counting On 5
 Thousands

$7583+5000=12583$

$\underset{6}{\text { MA2a: Counting }} \underset{\text { Ten Thousenss }}{\mathbf{O n}}$

$43,826+30,000=73,826$

MA2b: Counting On 6

5,763,947 + 4,000,000

(e)

MA3: Number Bonds

$45+95=140$

MA3: Number Bonds

0	+ 0000000000	10	(1) $+10=10$
1	- +	8	$1+9=10$
2	\bigcirc	8	$2+8=10$
8	$000+0000000$	7	$3+7=10$
4	O	6	4 $+6=10$
5	-	5	$5+5=10$
6	$000000+0000$	4	(5) ¢ = 10
7	\bigcirc	8	$7+8=10$
8	-	2	$8+2=10$
8	000000000 +	1	($+1=10$
10	0000000000 +	0	$10+0=10$

MA3: Number Bonds 2

MA3: Number Bonds 3

$43+9+7+21=80$

MA3: Number Bonds 4
$42+16+28+54=140$

(6). Luke's C. of E. Primary School

MA3: Number Bonds 5

$€ 4.56+£ 3.27+€ 1.44=€ 9.27$

(5t. Luke's C. of E. Primary School

MA3: Number Bonds 6

$24.25+31.63+21.75=77.63$

MA4: Double \& Adjust

(

MA4: Double \& Adjust

(\%)

MA4: Double \& Adjust

MA4: Double \& Adjust

MA4: Double \& Adjust

MA4: Double \& Adjust 6

$4.5+4.7=9.2$

$4.5+4.5+0.2$

MA5: Round \& Adjust

MA5: Round \& Adjust 1

©

MA5: Round \& Adjust

MA5: Round \& Adjust

$345+298=643$ $345+300=2$ $645-2=643$

MA5: Round \& Adjust

$4645+1996=6641$

4645 + 2000 - 4

$$
6645-4=6641
$$

MA5: Round \& Adjust 6

$45.2+49.9=95.1$ $\begin{aligned} 45.2+50 & =0.1 \\ 95.2 & =0.1=95.1\end{aligned}$

S1: Objects

"What do I get if I take $\mathbf{3}$ away from 7? Answer: 4"

S2: What"s the Difference? 1

"How many more is $\mathbf{7}$ than 5 ? What is the difference?"

S3: Counting Back 1

"What do I get if I take 3 away from 12? Answer: 9"

S4: Counting On

S4a: Counting On

 $+1+1+1+1+1$

"How many more is $\mathbf{8 3}$ than $\mathbf{7 8}$? What is the difference?"

S5: Backwalds Boing

(5) St. Luke's C. of E. Primary School

S6: Backwards Bounce 2

$\begin{array}{llllll}64 & 65 & 66 & 67 & 77 & 87\end{array}$

(\%)

S7: Backwards Jump 2

(S8: Triple Jumpl)

$87-23=64$

S8: Triple Jump!

(8) St. Luke's C. of E. Primary School

S8b: Quad Jump!

$132=5$

${ }_{3}^{58 c}$: Big Jump!

$356360 \quad 400 \quad 700723$

S8d: Quad Jump Extreme 4

+24 +200 +3000 \&42 $\curvearrowright \curvearrowright$
 17761800200050005042

5042-1776 = 3266

S8f: Decimal T=J! $\xrightarrow[8.7]{+0.3}$

13.4-8.7 = 4.7

(8)
(S90: 10s Jump, 1s Jumpl)

$87-23=64$

S9: 10s Jump, 1s Jump!

8
${ }_{3}^{59 b: ~ 10 s ~ J u m p, ~ 1 s ~ J u m p!~}$

$120-5$

(8)

S9c: 100s, 10s, 1s Jump

$723-356=367$

${ }_{4} 9 \mathrm{~d}: 1000 \mathrm{~s}, 100 \mathrm{~s}, 10 \mathrm{~s}$, 1s Junip

+3000 +200 +60 +6 $\bigcap \bigcap$
 17764776497650365042

5042 - 1776 = 3266

(8)

St. Luke's C. of E. Primary School

S9f: 1s Jump, Tenths Jump!

$13.4-8.7=4.7$

(S10: Expanded Column)
 2 Additional

87-23 = 64

©

(S10: Expanded Column)
 2 Additional:a

75-37 = 38

©

(S10: Expanded Column)
 Additional:b

 Subtraction

 Subtraction}

(

S10: Expanded Column Subtraction ($100,10,1 \mathrm{~s}$)

(S11: Column Subtraction)

2 Additional

(S11: Column Subtraction)

2 Additional:a

©

(S11: Column Subtraction)

3 Additional:b

S11: Column Subtraction 3

Slld: Column Subtraction 4

©

Slle: Column Subtraction

(\%)

Sllf: Column Subtraction 5

Sllg: Columin Subtraction $\underset{10}{\text { 10 } 1 . \frac{1}{10} \frac{1}{100}}$

(5)

S1lh: Column Subtraction 5

$12.4-5.97=6.43$

$10 \quad 1 \quad \frac{1}{10} \quad \frac{1}{100}$

(5)

MS1: Counting Back

$46-21=25$

©

MS2: Counting On

MS2a: Counting On

MS3: Round \& Adjust

(M1: Groups) 1

"2 groups of 5 counters makes 10 counters altogether"

M1: Repeated Addition (Groups)

$5 \times 3=5+5+5=15$

" 5 multiplied by 3 " means " 5 , 3 times", which gives " 3 lots of 5 "!
St. Luke's C. of E. Primary School

M2: Repeated Addition
 2

(M3: Arrays)

"2 groups of 5 counters" or " 5 groups of 2 counters" - "10 counters altogether"

M3: Arrays
 2

$3 \times 5=15$ or $5 \times 3=15$

M4: Multi Boing!

$15 \times 5=75$

M4a: Partitioning

 $15 \times 5=75$$$
\begin{array}{r}
10 \times 5=50 \\
5 \times 5=25 \\
50+25=75
\end{array}
$$

M5: Grid Method 3 $15 \times 5=75$

$50+25=75$

$43 \times 6=258$

$240+18=258$

M5b: Grid Method
 4

 Short Multiplication

 Short Multiplication}

$147 \times 4=588$

x	100	40	7
4	400	160	28

$400+160+28=588$

(M6:
 3 Additional
 Expanded Column)

(M6:
 4 Additional a
 Expanded Column)

(M7: Coumn Multiplication)

(M7: Column Multiplication)

M7ar Column Multiplication 4

©

M8: Crid Method 5 Long Multiplication

 $43 \times 65=2795$| x | 40 | 3 |
| :---: | :---: | :---: |
| 60 | 2400 | 180 |
| 5 | 200 | 15 |

$2400+180+200+15=2795$

(2)

St. Luke's C. of E. Primary School

M8a: Grid Method 5

 Long Multiplication

 Long Multiplication
 $$
243 \times 68=16,524
$$

X	200	40	3	
60	12000	2400	180	= 14,580
8	1600	320	24	= 1,944
$14580+1944=16,524$				

M8b: Grid Method 5

 Long Multiplication

 Long Multiplication}

$203 \times 68=13,804$

\section*{| x | 200 | 0 | 3 |
| :---: | :---: | :---: | :---: |
| 60 | 12000 | 0 | 180 |
| 8 | 1600 | | 24,180 |

 $12180+1624=13,804$}

M8c: Decimal Grid 5 Short Multiplication

$3.6 \times 4=14.4$

$$
12+2.4=14.4
$$

M8d: Decimal Grid 6

$$
47.2 \times 3=141.6
$$

\mathbf{x}	40	7	0.2
3	120	21	0.6

$120+21+0.6=141.6$

(1) St. Luke's C. of E. Primary School

M8e: Grid Method
 6

$$
7.38 \times 6=44.28
$$

x	7	0.3	0.08
6	42	1.8	0.48

$42+1.8+0.48=44.28$

©

M8f: Grid Method
 6
 $24.3 \times 2.5=60.75$

x	20	4	0.3		
2	40	8	0.6		
0.5	10	2	0.15	$=$	
:---:					

(5)

St. Luke's C. of E. Primary School

M9: Long Multiplication

M9a: Long Multiplication

6. St. Luke's C. of E. Primary School

M9b: Long Multiplication

(2)

M9d Column Multiplication

6
$10010 \quad 1 \quad-\frac{1}{10}$

$\underset{6}{\text { M9g Long Multiplication }}$

() St. Luke's C. of E. Primary School

MM1: Jump!

MMla: Jump!

$$
\begin{aligned}
& \times 1000 \\
& \times 100 \\
& \times 10 \\
& +10 \\
& +100 \\
& +1000
\end{aligned}
$$

(9 $\times 2$) $\times 5$ $18 \times 5=90$
(9 $\times 5$) $\times 2$ $45 \times 2=90$

$(2 \times 5) \times 2$ $10 \times 9=90$ *

MM2a: Re-ordering

$$
\begin{aligned}
& (7 \times 4) \times 5 \\
& 28 \times 5=140 \\
& (7 \times 5) \times 4 \\
& 35 \times 4=140 \\
& (4 \times 5) \times 7 \\
& 20 \times 7=140 *
\end{aligned}
$$

MM2b: Re-ordering

$$
\begin{aligned}
& (9 \times 8) \times 6 \\
& 72 \times 6=432 \\
& (9 \times 6) \times 8 \\
& 54 \times 8=432 * \\
& (8 \times 6) \times 9 \\
& 48 \times 9=432
\end{aligned}
$$

MM3: Partitioning

$15 \times 5=75$

$\underbrace{50}_{(10 \times 5)}+\underset{(5 \times 5)}{25}=75$

MM3a: Partitioning

$37 \times 4=148$

MM4: Round \& Adjust

$$
\begin{gathered}
49 \times 3=147 \\
(50 \times 3)-(1 \times 3) \\
150-3=147
\end{gathered}
$$

(5)

MM4a: Round \& Adjust

$198 \times 4=792$

$(200 \times 4)=(2 \times 4)$ \ / 800-8=792

MM4b: Round \& Adjust

$3.9 \times 5=19.5$
 $(4 \times 5)=(0.1 \times 5)$ $\lambda 1 /$
 20-0.5 = 19.5

MM4c: Round \& Adjust $\boldsymbol{£ 5 . 9 9 \times 6 = £ 3 5 . 9 4}$

($£ 6 \times 6$) $-(1 p \times 6)$ € $36-6 p=€ 35.94$

MM5: Doubling

Double $17=34$

©

MM5a: Doubling

Double $37=74$

(

MM5b: Doubling

Double $78=156$

$140+16=156$

MM5c: Doubling

Double 340 = 680

$600+80=680$
©

MM5d: Doubling

Double 480 = 960

MM5e: Doubling

Double 278 = 556

(5)

MM5f: Doubling

Double 768 = 1536

©

MM5g: Doubling

Double 3.7 = 7.4

MM6: Doubling Table Facts

$16 \times 7=112$
 (8×2)
 $$
\begin{aligned} & 8 \times 7=56 \\ & 1 \times 2 \times 7=112 \end{aligned}
$$

MM7: Doubling Up

$17 \times 4=68$

Double $17=34 \quad(17 \times 2)$ Double $34=68(17 \times 4)$

MM7a: Doubling Up

$36 \times 8=288$

Double $36=72 \quad(36 \times 2)$

Double 72 = 144 $\quad(36 \times 4)$
Double $144^{4}=288(36 \times 8)$

MM7b: Doubling Up

$125 \times 16=2000$

Double 125 = 250

(125x 2)
Double $250=500 \quad(125 \times 4)$
Double $500=1000 \quad(125 \times 8)$ Double $1000=2000(125 \times 16)$

MM8: Mult by: pioo then Halve

$$
\begin{gathered}
86 \times 5=430 \\
86 \times 10=860 \\
860 \div 2=430
\end{gathered}
$$

MM8ar: Mult byipoo then Halve

$56 \times 25=1400$
 $$
\begin{aligned} & 56 \times 100=5600 \\ & 5600 \div 2=2800 \\ & 2800 \div 2=1400 \end{aligned}
$$

(5)

MM9: Doubling \& Halving

45×14 $90 \times 7=630$

MM9a: Doubling \& Halving

36×25 18×50 $9 \times 100=900$

MM9b: Doubling \& Halving

26×32
 52×16
 $104 \times 8=832$

208×4 etc.

MM1O: Factorising

$32 \times 15=480$
 (32 x 5×3) / $160 \times 3=480$

MM10a: Factorising

$52 \times 24=1248$
 (52 $\times 4 \times$ 6) \/
 $208 \times 6=1248$

(5t. Luke's C. of E. Primary School

D1: Sharing (concept) 1

"If I share 6 into 2 equal amounts, how many in each group?" Answer: 3

D2:

 (Conceptr)
 1

"How many groups of 2 can I make out of 6? Answer: 3

D3: Division as Sharing 2

$12 \div 2=6$

"If I share 12 into 2 equal amounts, how many in each group?" Answer: 6

D4: Division as Grouping
 2

$12 \div 2=6$

"How many groups of 2 can I fit into 12?" Answer: 6

(8) St. Luke's C. of E. Primary School For sole use by purchasing school. Bespoke Graphic Design by Dave Godfrey - www.senseofnumber.co.uk

D5: Grouping en aNumber Line 2

"How many 5s in 20?" Answer: 4

D5a: Grouping en a Number Line 2

$17 \div 5=$

(.)

D6: Grouping Griid

> "How many times can I fit (groups of) 4 into 27 ?" Answer: 6 r3

D7: Chunking Jump

$$
4 \times 10 \quad 4 \times 8
$$

72\div 4

18

D7a: Chunking
 Remainders

"How many 45 in 65?" Answer: 16r1

$65 \div 4=16 r 1$

D8: Find the Hunk! 3

©

D8a: Find the Hunk!

3
Remainders

$65 \div 4=16 r 1$
 The Hunk!
 Chunk 40 + 25

 $$
\div 4
$$
 $$
10+6 r 1=16 r 1
$$

D9: Mega Hunk!

$136 \div 4=34$

D9c: Mega Hunk!

$394 \div 6=65 \mathrm{r} 4$

Mega Hunk! Chunk $360+34$

5

 $591 \div 3=197$

5

$5978 \div 7=854$

D9f: Mega Hunk!

$846 \div 5=169 \mathrm{n}$

Mega
Hunk!500 + 300 + 46 $\downarrow|\quad| \quad \div 5$
$100+60+9 \mathrm{r}=169 \mathrm{rl}$

D9g: Mega Hunk! simpleng ixision
 $$
480 \div 15=32
$$

Mega Hunk!
 Chunk

450 + 30

6

$18 \div 1.5=12$

D9i: Decimal Hunk!
6

Mega
$70+14+3.5$

(5) St. Luke's C. of E. Prinury School

(D10: Short Division)

3 Additional

$$
72 \div 4=18
$$

(D10: Short Division)

3 Additional:a

$65 \div 4=16 r 1$

D10: Short Division
4

$136 \div 4=34$

St. Luke's C. of E. Primary School

D10c: Short Division 5

$394 \div 6=65 r 4$

D10d: Short Division 5

$591 \div 3$ = 197

D10e: Short Division เ

$5978 \div 7=854$

D10f: Short Division
 5
 Dificrent Remolidere

$846 \div 5$

169r1 $5 \longdiv { 8 ^ { 3 } 4 ^ { 4 } 6 }$

$169 \frac{1}{5}$ $5 \longdiv { 8 ^ { 3 } 4 ^ { 4 } 6 }$

D10i: Short Division
6

$87.5 \div 7=12.5$

(D11: Ghunking)

(D11: Chunking)

D11: Chunking

Dllb: Chunking
134
41136
$=\frac{40}{96}(4 \times 10)$
$=\frac{40}{56}(4 \times 10)$
$=\frac{40}{16}(4 \times 10)$
$=\frac{16}{0}(4 \times 2)$
$136+4=34$

Remainders

Dild: Chunking

Mega Chunk

$$
\begin{aligned} & 197 \\ & 3 \longdiv { 5 9 1 } \\ &= 300(3 \times 100) \\ & 291 \\ &= 270(3 \times 90) \\ &-21 \\ &= 21 \end{aligned}
$$

 197

 197 $3 \longdiv { 5 9 1 }$ $3 \longdiv { 5 9 1 }$ $-\frac{300}{291}(3 \times 100)$ $-\frac{300}{291}(3 \times 100)$ $\frac{270}{21}$ $\frac{270}{21}$

 (3×7)

 (3×7)}
5

 D11f: Chunking

 D11f: Chunking}

1

Mega Chunk

$$
\begin{aligned} & 169 \mathrm{r} \\ & 5 \longdiv { 8 4 6 } \\ &= 500 \\ & 346 \\ &= 300 \\ &=(5 \times 60) \\ &= 45(5 \times 9) \\ & \hline \end{aligned}
$$

 $5 \longdiv { 1 6 9 r 1 }$

 $5 \longdiv { 1 6 9 r 1 }$

 $=\frac{500}{346}(5 \times 100)$

 $=\frac{500}{346}(5 \times 100)$

 $-\frac{300}{46}(5 \times 60)$

 $-\frac{300}{46}(5 \times 60)$

 (5×9)

 (5×9)}$846 \div 5=169 \mathrm{n}$
(1) St. Luke's C. of E. Primery School

D11gl: Chunking
6

D11g2: Chunking

$$
\begin{aligned}
& 32 \\
&= 480 \\
&= \frac{150}{330}(15 \times 10) \\
&= 150 \\
& \hline 180 \\
&= 150(15 \times 10) \\
& \hline 30 \\
&- 30 \\
& \hline
\end{aligned}(15 \times 2)
$$

$$
480 \div 15=32
$$

D12: Long

 Division

 Division
 Short Division Method

D13: Long Division chan

$$
\begin{aligned}
& 26121 \\
&= \frac{740}{983}(37 \times 20) \\
&= \frac{222}{21}(37 \times 6) \\
& 983+37=2621
\end{aligned}
$$

D13j: Long Division
6

$$
\begin{aligned}
& 26 r 21 \\
37 & \frac{983}{370}(37 \times 10) \\
& \frac{613}{370}(37 \times 10) \\
& =\frac{243}{21}(37 \times 6) \\
983 \div 37 & =26.21
\end{aligned}
$$

6

26 г21

St. Luke's C. of E. Primary School
$983+37=26$ r21

Sense of Number Calculation Cards

by Dave Godfrey

dave@senseofnumber.co.uk Tel: 01904778848

The following slides show the colloullation $43+24$ using a variety of resourees and manipullatives.

A: Base 10

$43+24=67$

B: Arrow Cards

$43+24=67$

C: Hundred Square

$43+24=67$

41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70

\section*{D: Numicon $43+24=67$
 $\begin{array}{cc}0000000000000000000000 \\ 00000000000083 \\ 10 \quad 20 & 40\end{array}$
 | 000000000000 | |
| :---: | :---: |
| 0000000000 | 20 |
 000000000000000000000000000000000063
 $102030 \quad 4050$}

St. Luke's C. of E. Primary School

E: Place Value Counters

$43+24=67$

(\%)

F: Money

$43+24=67$

G: Abacus

$43+24=67$

H: Number Line

MF: 2x Table Facts

$2 \times 1=2$
$2 \times 7=14$ $2 \times 2=4$
$2 \times 8=16$
$2 \times 3=6$
$2 \times 4=8$
$2 \times 5=10$
$2 \times 6=12$
$2 \times 9=18$
$2 \times 10=20$
$2 \times 11=22$
$2 \times 12=24$

(5)

MF: 3x Table Facts

$3 \times 1=3$
 $3 \times 2=6$
 $3 \times 3=9$
 $3 \times 4=12$
 $3 \times 5=15$
 $3 \times 6=18$

 $3 \times 7=21$
 $3 \times 8=24$
 $3 \times 9=27$
 $3 \times 10=30$
 $3 \times 11=33$
 $3 \times 12=36$

(5)

MF: 4x Table Facts

$4 \times 1=4$
$4 \times 7=28$ $4 \times 2=8$ $4 \times 3=12$ $4 \times 4=16$
$4 \times 5=20$
$4 \times 6=24$
$4 \times 8=32$
$4 \times 9=36$
$4 \times 10=40$
$4 \times 11=44$
$4 \times 12=48$
(8)

MF: 5x Table Facts

$$
\begin{array}{ll}
5 \times 1=5 & 5 \times 7=35 \\
5 \times 2=10 & 5 \times 8=40 \\
5 \times 3=15 & 5 \times 9=45 \\
5 \times 4=20 & 5 \times 10=50 \\
5 \times 5=25 & 5 \times 11=55 \\
5 \times 6=30 & 5 \times 12=60
\end{array}
$$

MF: 6x Table Facts

$6 \times 1=6$
 $6 \times 7=42$ $6 \times 2=12$ $6 \times 3=18$ $6 \times 4=24$ $6 \times 5=30$ $6 \times 6=36$
 $6 \times 8=48$
 $6 \times 9=54$
 $6 \times 10=60$
 $6 \times 11=66$
 $6 \times 12=72$

(5)

MF: 7x Table Facts

$$
\begin{array}{ll}
7 \times 1=7 & 7 \times 7=49 \\
7 \times 2=14 & 7 \times 8=56 \\
7 \times 3=21 & 7 \times 9=63 \\
7 \times 4=28 & 7 \times 10=70 \\
7 \times 5=35 & 7 \times 11=77 \\
7 \times 6=42 & 7 \times 12=84
\end{array}
$$

MF: 8x Table Facts

$8 \times 1=8$
$8 \times 7=56$
$8 \times 2=16$
$8 \times 3=24$
$8 \times 4=32$
$8 \times 8=64$
$8 \times 9=72$
$8 \times 10=80$
$8 \times 5=40$
$8 \times 11=88$
$8 \times 6=48$
$8 \times 12=96$

5

MF: 9x Table Facts

$9 \times 1=9$
$9 \times 2=18$
$9 \times 3=27$
$9 \times 4=36$
$9 \times 5=45$
$9 \times 6=54$
$9 \times 7=63$
$9 \times 8=72$
$9 \times 9=81$
$9 \times 10=90$
$9 \times 11=99$
$9 \times 12=108$
(\%)
St. Luke's C. of E. Primary School

MF: 10x Table Facts

$10 \times 1=10$
 $10 \times 7=70$ $10 \times 2=20$ $10 \times 3=30$ $10 \times 4=40$ $10 \times 5=50$ $10 \times 6=60$ $10 \times 8=80$ $10 \times 9=90$ $10 \times 10=100$ $10 \times 11=110$ $10 \times 12=120$

© St. Luke's C. of E. Primary School

MF: 11x Table Facts

$11 \times 1=11$
 $11 \times 2=22$
 $11 \times 3=33$
 $11 \times 4=44$
 $11 \times 5=55$
 $11 \times 6=66$
 $11 \times 7=77$ $11 \times 8=88$ $11 \times 9=99$ $11 \times 10=110$ $11 \times 11=121$ $11 \times 12=132$

©

MF: 12x Table Facts

$$
\begin{array}{ll}
12 \times 1=12 & 12 \times 7=84 \\
12 \times 2=24 & 12 \times 8=96 \\
12 \times 3=36 & 12 \times 9=108 \\
12 \times 4=48 & 12 \times 10=120 \\
12 \times 5=60 & 12 \times 11=132 \\
12 \times 6=72 & 12 \times 12=144
\end{array}
$$

5

Y1							$\begin{aligned} & \text { Addition Colacutation } \\ & 4 \pm 2=6 \end{aligned}$	
Y1								
Y1								

Y2			$\begin{aligned} & \text { A5s. Patrition Jot } \\ & 57+25=82 \\ & 70+12 \end{aligned}$		

(2)

$|$| A4b: Partitioning |
| ---: |
| $86+48=134$ |
| $80+40=120$ |
| $6+8=\frac{14}{134}$ |

$|$| A5b: Partition Jot |
| :---: |
| $86+48=134$ |
| $120+14$ |

$|$| (A6: Expanded Column) |
| :---: |
| non |
| 86 |
| +48 |
| 144 |
| $\frac{120}{134}$ |

		A3c: Forwards Jump $687+248=935$

A6: Expanded Column $\begin{array}{r} 601 \\ 687 \\ +248 \\ \hline 125 \\ 800 \\ 935 \\ \hline \end{array}$	A7: Column Addition $\begin{array}{r} 687 \\ +\quad 248 \\ \hline 935 \\ \hline 11 \end{array}$

			A5g: Partition Jot $\begin{aligned} & 5.65+3.2=8.94 \\ & 8+0.8+0.16 \end{aligned}$	A7g: Column Addition $\begin{array}{r} 5.65 \\ +3.29 \\ \hline 8.94 \\ \hline 1 \end{array}$

				A5i: Partition Jot $\mathbf{\epsilon 6 5 . 0 0} \mathbf{+} \mathbf{€} 0.71$ (1) Smunut Mimeer Princy Sshed \qquad

A7i: Column Addition
€38.25
+ $\frac{\text { E27.46 }}{\text { E65.71 }}$
$\frac{1}{1}$

L

	S1: Objects -O००あ末 $7-3=4$ 0 \qquad					Subtraction Calculation \qquad	
		S2: What's the Difference? $7-5=2$	S3: Counting Back $12-3=9$	S4: Counting On $12-9=3$			
			S5: Buckwords Boing $75-7=68$	S4a: Counting On $83-78=5$			

S6: Backwartls Bounce$87-23=64$	

${ }_{2}$ (S8\%: Triple Jumpl)	(S9: 10 s Jump, 1s Jumpl)	(S10: Expanded Column)	(S11: Column Subtraction)
+7 +50	+60	87-23 = 64	${ }^{10}$
$\frac{130}{23} 30$	23 83 87		-23
87-23 = 64	$87-23=64$	604	64

			S7: Backwords Jump $75-37=38$

\mid

(S10: Expanded Column)	(S11: Column
75-37 = 38	
${ }^{60} 70{ }^{1} 5$	
307	3
308	38

S9b: 10s Jump, is Jump! $132-56=76$

(S10: Expanded Column)	(S11: Column Subtraction)
132-56 = 38	
O100 30	182
506	
706	76

S8c: Big Jump!
$+4+40+300$
$356360 \quad 400 \quad 700723$
723-356 = 367

S9c: 100s, 10s, 1s Jump

S10: Expanded Column $$	S11: Column Subtraction $\begin{array}{r}10010 \\ 6{ }^{110} 1 \\ 723 \\ -356 \\ \hline 367\end{array}$

\square

| | | |
| :--- | :--- | :--- | :--- |

S8d: Quad Jump Extreme
+24 +200 +3000 +42
618002000
5042-1776 = 32

Slld: Column Subtraction
48^{2131}
-1776
-3266

St. Luke's C. of E. Primary Schoot VCP Expandea Edition © Sense of Number 2015

						$\begin{array}{\|r\|} \hline \text { Slle: Column Subtraction } \\ 7^{3} \not 1^{1} 2^{71} 8^{1} 1 \\ -427358 \\ \hline 315473 \\ \hline \end{array}$
				S9f: 1s Jump, Tenths Jump!		Sllf: Column Subtraction $101, \frac{1}{10}$ 0.12 .4 78.4 $\frac{-8.7}{4.7}$
						S1lh: Column Subtraction

	MS1: Counting Back $\begin{gathered} 46-21=25 \\ 46^{-20} 26 \end{gathered}$ -	MS2: Counting On $\begin{gathered} 75-47=28 \\ 47+207^{+8} \\ 45 \end{gathered}$	MS3: Round \& Adjust $\begin{gathered} 84-29=55 \\ 84-30+1 \\ 54+1=55 \end{gathered}$				
		MS2a: Counting On $\begin{aligned} & 75-47=28 \\ & 47+50 \end{aligned}$					

| | MF: 6x Table Facts |
| :--- | :--- | :--- |
| $6 \times 1=6$ | $6 \times 7=42$ |
| 6×20 | $6 \times 8=48$ |
| $6 \times 3=12$ | $6 \times 9=54$ |
| $6 \times 4=24$ | $6 \times 10=60$ |
| $6 \times 55=30$ | $6 \times 11=66$ |
| $6 \times 6=36$ | $6 \times 12=72$ |

MF: 7x Table Facts	
$7 \times 1=7$	$7 \times 7=49$
$7 \times 2=14$	$7 \times 8=56$
$7 \times 3=21$	$7 \times 9=63$
$7 \times 4=28$	$7 \times 10=70$
$7 \times 5=35$	$7 \times 11=77$
$7 \times 6=42$	$7 \times 12=84$

MF: $9 \times$ Table Facts	
$9 \times 1=9$	$9 \times 7=63$
$9 \times 2=18$	$9 \times 8=72$
$9 \times 3=27$	$9 \times 9=81$
$9 \times 4=36$	$9 \times 10=90$
$9 \times 5=45$	$9 \times 11=99$
$9 \times 6=54$	$9 \times 12=108$

M5a: Grid Method $43 \times 6=258^{5}$	(M6: Expanded Column) ${ }^{100} \quad 43$
x 40 3	- 6
6 240 18	$18{ }^{16}$
+ $18=25$	258

$|$| (M7: Column Multiplication) |
| :---: |
| no |
| 43 |
| $\frac{x \quad 6}{258}$ |
| $\frac{1}{2}$ |

$\cdots /$	MF: 11x Table Facts	
	$11 \times 1=11$ $11 \times 2=22$	$11 \times 7=77$ $11 \times 8=88$
	$11 \times 3=33$	$11 \times 9=99$
	$11 \times 4=44$ $11 \times 5=55$	$11 \times 10=110$ $11 \times 11=121$
	11x6=66	$11 \times 12=132$
		$\xrightarrow{-1}$

MF: 12x Table Facts	
$12 \times 1=12$	12×7
$12 \times 2=24$	$12 \times 8=$
$12 \times 3=36$	$12 \times 9=108$
$12 \times 4=48$	$12 \times 10=120$
$12 \times 5=60$	$12 \times 11=132$
$\times 6=72$	$12 \times 12=$

$\begin{array}{r} 147 \\ \times \quad 4 \\ \hline 588 \\ \hline 12 \end{array}$	M7ar Column Mu $\begin{aligned} & 364 \\ & x \\ & \hline \frac{1458}{212} \end{aligned}$

Y5					\square			
Y5					75954			
Y5					(en	\square		
Y6								
Y6								
Y6								
Y6					$37 / 99^{2631}$			
Y6								

	MAl: Partitioning $\begin{aligned} & 45+82=127 \\ & 120+7=127 \end{aligned}$	MA2: Counting On $\begin{gathered} 45+20=65 \\ 45 \\ 45 \end{gathered}$ O		MA3: Number Bonds $\begin{aligned} & 45+95=140 \\ & 40+100=140 \end{aligned}$ 6	MA4: Double \& Adjust $\begin{gathered} 45+46=91 \\ 45+45+1 \\ 90+1=91 \end{gathered}$	MA5: Round \& Adjust $\begin{gathered} 45+39=84 \\ 45+40-1 \\ 85-1=84 \end{gathered}$	
		MA2a: Counting On $12+5=17$ $+5$ 17	MA2b: Counting On $\begin{aligned} & 57+10=67 \\ & 57+10 \text { ? } \end{aligned}$	MA3: Number Bonds 	MA4: Double \& Adjust $\begin{aligned} & 5+6=11 \\ & 5+5+1 \\ & 10+1=11 \end{aligned}$	MA5: Round \& Adjust $\begin{gathered} 45+9=54 \\ 45+10-1= \\ 55-1=54 \end{gathered}$	
	MAI: Partitioning $\begin{aligned} & 43+21=64 \\ & 60+4 \\ & 4 \end{aligned}$	MA2a: Counting On $\begin{gathered} 78+7=85 \\ 78,85 \end{gathered}$	MA2b: Counting On $58+40=98$ 58 98	MA3: Number Bonds $3+4+7=14$ 104	MA4: Double \& Adjust $\begin{aligned} & 7+8=15 \\ & 7+7+1 \\ & 14+1=15 \end{aligned}$	MA5: Round \& Adjust $\begin{gathered} 45+19=64 \\ 45+20-1 \\ 65-1=64 \end{gathered}$	
	MA1: Partitioning $\begin{aligned} & 57+25=82 \\ & 70+12=82 \end{aligned}$	MA2a: Counting On $85+50=135$	MA2b: Counting On $534+300=834$	MA3: Number Bonds $43+9+7+21=80$ 5030 (2) \qquad	MA4: Double \& Adjust $\begin{gathered} 16+17=33 \\ 16+16+1 \\ 32+1=33 \end{gathered}$	MA5: Round \& Adjust $\begin{gathered} 45+97=142 \\ 45+100-3 \\ 145-3=142 \end{gathered}$	
	MA1: Partitioning $\underbrace{648+231}_{800+70+9}=879$	MA2a: Counting On $784+60=844$	MA2b: Counting On	MA3: Number Bonds $>_{70}^{42+16+28+54}=140$ 0	MA4: Double \& Adjust $\begin{aligned} & 37+38=75 \\ & 37+37+1 \\ & 74+\quad 1=75 \end{aligned}$	MA5: Round \& Adjust $\begin{aligned} & 345+298=643 \\ & \begin{array}{l} 345+300-2 \\ 645-\quad 2=643 \end{array} \end{aligned}$	
	MAI: Partitioning $\left.\right\|_{(00+120} ^{576+258}=834$		MA2b: Counting On	MA3: Number Bonds $\underbrace{\mathrm{E} 4.56+\mathrm{e} 3.27+£ 1.44}_{£ 6.00}=\mathrm{e} 9.27$ 0	MA4: Double \& Adjust $\begin{aligned} & 125+127=252 \\ & 125+125+2 \\ & 250+2=252 \end{aligned}$	MA5: Round \& Adjust $\begin{gathered} 4645+1996=6641 \\ 4645+2000-4 \\ 6645-\quad 4=6641 \end{gathered}$	
	MAl: Partitioning $4.73+2.21=6.94$ $6+0.9+0.043=6.94$	MA2a: Counting On $\underbrace{43,826+30,000}_{\substack{\mid 3,826 \\+30,000}}=73,826$	MA2b: Counting On	MA3: Number Bonds $24.25+31.63+21.75=77.63$	MA4: Double \& Adjust $\begin{gathered} 4.5+4.7=9.2 \\ 4.5+4.5+0.2 \\ 9+\quad 0.2=9.2 \end{gathered}$	MA5: Round \& Adjust $\begin{aligned} & 45.2+49.9=95.1 \\ & 45.2+56-0.1 \\ & 95.2-0.1=95.1 \end{aligned}$	

MM1: Jump!	
$x 100$	$34000^{\text {a }}$
$\times 10$	340
+10	3.4
+100	0.34

MM2: Re-ordering $\begin{aligned} & (9 \times 2) \times 5 \\ & 18 \times 5=90 \\ & (9 \times 5) \times 2 \\ & 45 \times 2=90 \\ & (2 \times 5) \times 9 \\ & 10 \times 9=90 * \end{aligned}$	MM3: Partitioning $\begin{aligned} & 15 \times 5=75 \\ & \underbrace{50}_{(10 \times 5)}+\underbrace{25}_{(5 \times 5)}\}=75 \end{aligned}$

MM4: Round \& Adjust
$49 \times 3=147$
$(50 \times 3)-(1 \times 3)$
$150-3=147$

$|$| MM5: Doubling |
| :--- |
| Double $17=34$ |
| $20+14=34$ |

\square

$\|c\|$	
198×4 a R Round \& Adjust	MM5a: Doubling
$(200 \times 4)-(2 \times 4)$	Double $37=74$
$800-8=792$	$60+14=74$

\square

MM4b: Round \& Adjust
$3.9 \times 5=19.5$
$(4 \times 5)-(0.1 \times 5)$
$20-0.5=19.5$

MM5b: Doubling			
Double $78=156$			
$140+16=156$			

MM4c: Round \& Adjust$\begin{aligned} & £ 5.99 \times 6=€ 35.94 \\ & (£ 6 \times 6)-(1 p \times 6) \\ & £ 36-6 p=€ 35.94 \end{aligned}$

MM5d: Doubling			
Double 480 = 960			
$/$			
$800+160=960$			

MM5e: Doubling			
Double 278 = 556			
$400+140+16=556$			

MM5f: Doubling			
Double $768=1536$			
$1400+120+16=1536$			

MM5g: Doubling
 Double 3.7 = 7.4
 $6+1.4=7.4$

Sense of Number Standard Alternative Slides by Dave Godfrey

dave@senseofnumber.co.uk Tel: 01904778848
The following slides the standard olt ternotive slide configurations to the malin set of slides.

(A7: Column Addition)
 2 Additional:a

(A7: Golumn Addition)
 2/3 Additional:b

A7: Column Addition 3

A7d: Column Addition 4

(.)

A7e: Column Addition 5

5

(5t. Luke's C: of E. Primary School

A7g: Column Addition

(5t. Luke's C. of E. Primary School

A7i: Column Addition 5

(5) St. Luke's C. of E. Primary School

A7 j: Column Addition

$73.4+5.67=79.07$

 1

"What do I get if I take 8 away from 12? Answer: ©"

S5a: Backwalrds Boing 2

S6a: Backwalds Bounce 2

©
St. Luke's C. of E. Primary School

S7a: Backwards Jump 2

-7

©

(M7: Corum Multiplication)
 101

(M7: Column Multiplication)
 4 Additional:a

(\%)

M7: Column Multiplication
 $100 \quad 10 \quad 1$

(5t. Luke's C. of E. Primary School

M7ar Column Multiplication

(\%) St. Luke's C. of E. Primary School

M9: Long Multiplication

©

M9a: Long Multiplication

(5)

M9b: Long Multiplication

©

M9d Column Multiplicotion

6

M9e: Column Multplication 6

$\underset{6}{\text { M9g Long Multiplication }}$

(5)

St. Luke's C. of E. Primary School

