Sense of Number Visual Algebra Policy

St. Luke's C. of E.. Primary School October 2015
$\Delta 0 \Delta 0 \Delta 0$ -

Graphic Dosing by Dave coditioy Complied by the Sente of Number Math Team For sole use within St. Luke's C. of E. Primary School.

"A pleture ls worth 1000 wordily" www-senseofnumber.couk

Guide to using a Visual Algebra Policy

The Sense of Number Visual Algebra Policy provides a visual interpretation of the progression required across the Primary school to help children meet the objectives found within Domain 10: Algebra in the new National Curriculum.

A school branded VAP is created by Dave Godfrey for individual schools when the school logo and school name are added to the footer of each slide.

Typical uses:

Classroom: The slides are printed out (e.g. A4) and the appropriate slides are displayed within each classroom for continual reference or on a working wall.
Teacher Reference: The slides are printed out (e.g. 9 slides per A4 page) and inserted in the teacher's planning folder.
Parents: The slides are used to communicate to parents the school"s approach to developing and teaching algebraic thinking.
Website: Selected slides from the VAP are inserted onto a school's maths webpages. (Please note: the VAP should not be made available for download.)

St. Luke's C. of E. Primary School

Sections in the Visual Algebra Policy

1-4 Introduction Slides
5-8 General Algebra Slides

Pages	Code	Years
$9-14$	AA	FS-Y4
$15-23$	AB	Y1-Y6
$24-31$	AC	Y1-Y6
$32-37$	AD	Y1-Y6
$38-56$	AE	Y1-Y6
$57-69$	AF	Y1-Y4
$70-73$	AG	Y1-Y6
$74-91$	AH	Y4-Y6
$92-97$	AI	Y5-Y6

Theme
Patterns and Sequences
Counting Sequences
Number Shapes (patterns \& sequences)
Abacus (patterns \& sequences)
Function Machines
Graphing Sequences
Balancing Stacks
Balancing Equations
Formulae
Algebra Word Problems

Year Groups:

Specific Slide Locations

Section	$Y 1$	$Y 2$	$Y 3$	$Y 4$	$Y 5$	$Y 6$
A: Patterns and Sequences	$9-11$	$11-14$				
B: Counting Sequences	$15-16$	$17-18$		$19-21$	$20-23$	
C: Number Shapes (P\&S)	24	25	26,27		$28-31$	
D: Abacus (P\&S)	32		$33-35$		36,37	
E: Function Machines	38	$39-43$	$44-47$	$48-51$	52	$53-56$
F: Graphing Sequences				57,58	$59-63$	$61-69$
G: Balancing Stacks	70	70,71	72	73		
H: Balancing Equations	$74-76$	77,78	79	79,80	$81-83$	$84-91$
I: Formulae				$92-94$	$\mathbf{9 5 - 9 7}$	
J: Algebra Word Problems					$\mathbf{9 8 - 1 0 2}$	

Seeing a Sequence

A: Count

B: Pattern

BEC BBE BBC B B

C: Terms of Sequence

labelling the position of the greens

乌Qリ!

		1			2			3			
1	2	3	4	5	6	7	8	9	10		
		3			6			9			

Equals Sign is a Bollance

围

02

Agebratic Notation

Letters in Algebra

(e	12	24	36	
umber	b	1	2	3	$\frac{\mathrm{e}}{12}$

In Algebra letters are variables!

AA: Patterns is Sequences

8t. Luke's C. of E. Primary School

AA: Potterns a Sequences Whatere ctemisising tem?

$$
\begin{aligned}
& 2,4,6,-12,14, \\
& 5,10,15,20,-, 45, \\
& 24,22,-18,16,-,
\end{aligned}
$$

$$
30,40, \ldots, 60,70, \ldots,
$$

AA: Pattems \& Sequenaes 2a

 What are the missing terms?

 What are the missing terms?}
$]_{0} \longrightarrow \longrightarrow{ }^{4} \square \longrightarrow \square \longrightarrow \square$
$37,39, \ldots, 43,45, \ldots$

180, 170, _, 150, 140, _,

AA: Patterns \& Sequences 2b What ore the missing tems?

$$
1,4, \ldots, 18,16, \ldots,
$$

$5,9, \ldots, 17, \ldots, 25$,

36, 42, _,

54, 60, _,

(.) St. Luke's C. of E. Primary Schooll

AA: Potterns a Sequences $3 \quad$ What are the missing terms?

$$
1,4,9, \ldots, 36,49,
$$

$1,5,9,13, \ldots, \ldots, \ldots$

AA: Patterns \& Sequences 3/4
 What are the missing terms?

$12,8,4,0, \ldots, \ldots, 12$,
$5,3,1, \ldots, \ldots,-5,-7$,

$32,22,12,2, \ldots, \ldots$

$\underset{120}{ } \mathbf{A B}$: Counting Sequences "Who is going to say 30?"

$\underset{12 b}{\mathbf{A B}}$: Counting Sequences "Who is going to say 100?"

$\underset{230}{A B}$: Counting Sequences

AB: Counting Sequences 2/3b "Who is going
 $$
\begin{array}{|l|l|l|l|l|l|l|l|} \hline 1 & 5 & 9 & 13 & 17 & 21 & ? & ? \\ \hline \end{array} \quad \text { to say 39?" }
$$ to Say 39?"

 to Say 39?"}

$\underset{\substack{3 / 4}}{A B}$: Counting Sequences

4	8	12	16	2024	?

2	6	10	14	18	22	?

AB: Counting Sequences 4/5a "Who is going to say 70?"

AB: Counting Sequences 4/5b "Who is going to say 144 ? ${ }^{n}$

AB: Counting Sequences 5/6 "Who is going to say 24 ?"

$$
\begin{aligned}
& \underset{5 / 6 \mathrm{~b}}{\mathrm{~A}} \mathbf{B} \mathrm{y}=4 \mathrm{x}=\text { ? } \\
& \text { "Who is } \\
& \text { going to } \\
& \text { say 39?" }
\end{aligned}
$$

Count in 45 !

x	1	2	3	4	5	6	7	8
y	4	8	12	16	20	24	$?$	$?$

x	1	2	3	4	5	6	7	8
y	2	6	10	14	18	22	$?$	$?$

$y=4 x-1$								
	1	2	3	4	5	6	7	8
y	3	7	11	15	17	19	$?$	$?$

AC: Number Shapes 1

3a
 Number Shapes
 Sequences

 13
(3) St. Luke's C. of E. Primary School

AC: Number Shapes 3b

52

8)

St. Luke's C. of E. Primary School

(

(8) St. Luke's G. of E. Primary School

AD: Abacus 1/2

1	\rightarrow	3
2	\rightarrow	6
3	\rightarrow	9
4	\rightarrow	12
5	\rightarrow	15
6	\rightarrow	18

St. Luke's C. of E. Primary School
$\underset{3 / 40}{ } \mathbf{D}:$ AbacuS $y=3 x$

x	$x 3$	y
1	\rightarrow	3
2	\rightarrow	6
3	\rightarrow	9
4	\rightarrow	12
5	\rightarrow	15
6	\rightarrow	18

AD: Abacus $y=3 x+1$

x	x^{3}	y	+1	y
1	\rightarrow	3	\rightarrow	4
2	\rightarrow	6	\rightarrow	7
3	\rightarrow	9	\rightarrow	10
4	\rightarrow	12	\rightarrow	13
5	\rightarrow	15	\rightarrow	16
6	\rightarrow	18	\rightarrow	19

St. Luke's C. of E. Primary School

AD: Abacus 5/6

$y=3 x+1$

x	$x 3$	y	+1	y
1	\rightarrow	3	\rightarrow	4
2	\rightarrow	6	\rightarrow	7
3	\rightarrow	9	\rightarrow	10
4	\rightarrow	12	\rightarrow	13
5	\rightarrow	15	\rightarrow	16
6	\rightarrow	18	\rightarrow	19

AD: Abacus
6

$y=5 x+3$

$$
y=2 x+7
$$

AE: Doubling Machines

(5) St. Luke's C: of E. Primary School

AE: Doubling Machines

(5) St. Luke's C: of E. Primary School

AE: Function Machines 2b

 Numerical Order

 Numerical Order}

(5) St. Luke's C. of E. Primary School

AE: Function Machines 2c

(8) St. Luke's G: of E. Primary School

AE: Function Machines 2d

 Numerical Order

 Numerical Order}

AE: Function Machines $2 e$
 Numerical Order

(5) St. Luke's C. of E. Primary School

AE: Function Machines 3a

 Numerical Order

 Numerical Order}

AE: Function Machines 3b

St. Luke's C: of E. Primary School

AE: Function Machines 3c
 Random

(8) St. Luke's G: of E. Primary School

AE: Function Machines 3d

AE: Function Machines 4a
 Numerical Order

x	1	2	3	4	5	6	7	8	9	10
$\times 4$	4	8	12	16	20	24	28	32	36	40
+2	6	10	14	18	22	26	30	34	38	42

AE: Function Machines 4b
 Numerical Order

x	1	2	3	4	5	6	7	8	9	10
x^{3}	3	6	9	12	15	18	21	24	27	30
-1	2	5	8	11	14	17	20	23		529

8 St. Luke's C. of E. Primary School

AE: Function Machines 4 c
 Random

St. Luke's C. of E. Primary School

AE: Function Machines 4d
 Random

(5) St. Luke's C. of E. Primary School

AE: Function Machines 2

(8) St. Luke's C. of E. Primary School

AE: Function Machines

Guardian of the Rule

AE: Function Machines 6c

Guardian of the Rule

AE: Function Machines 6d

Guardian of the Rule

AF: Tines Tables Senomeo 40

When x is $3, y$ is? When x is $6, y$ is 12 When x is $9, y$ is ?

0

(5) 8
x

AF: Terms of a Sequence

First Term						10th	$\begin{aligned} & \text { 100th } \\ & \text { Term } \\ & \hline \end{aligned}$
\square	2	3	4	5	\longrightarrow	10	100
					\longrightarrow		
First Term is							
Step Size is						Compa	the
10th Term will be						sequen to the	
100th Term will be						step si times-	table

St. Luke's C. of E. Primary School

AF: Graphing a Sequence

y		1	2	3	4	5	6	7	7
12	y	12	8	4	0	?	?	-12	12

Counting back in 4 's, starting at 12

St. Luke's C. of E. Primary School
AF: Shifting "3 Sequence"

	x					
$y=3 x$	1	2	3	4	\rightarrow	n
	3	6	9	12	\rightarrow	n
$y=3 x+2$	5	8	11	14	\rightarrow	n

Each term moves on 2!

0

First Term is
Step Size is
10th Term will be nth Term will be

Hint:
Compare the sequence to the step size times-table

$\underset{565}{ } \mathbf{A F}$: Negative Sequence

x	0	1	2	3	4	5	\longrightarrow	10	\mathfrak{n}
y	12	10	8	6	4	2	\longrightarrow		

Counting back in 2's, starting at 10

$y=-2 x+12$

AF: Graphing a Sequence

AF: Graphing a Sequence

g	\times	1	2	3	4	5	6	7	7
12	y	12	8	4	0	?	?	-1	12

Counting back in 4's, starting at 12 $y=-4 x+16$

AF: Connections 6d

$$
\begin{gathered}
y=m x+c \\
\text { If } m \text { is } 0, c \text { is } \mathbb{1}: y=1 \\
\text { If } m \text { is } 1, c \text { is } \mathbb{1}: y=x+1 \\
\text { If } m \text { is } 2, c \text { is } 1: y=2 x+1 \\
\begin{array}{l}
m=\text { gradient } \\
c=y \text { intercept, when } \\
x
\end{array} \\
\text { is zero (zero term) }
\end{gathered}
$$

$\underset{6}{A F}: y=m x+c$

$$
\begin{aligned}
& y=m x+c \\
& \text { If } m \text { is } 1, c \text { is } 0: y=x \\
& \text { If } m \text { is } \mathbb{1}, c \text { is } 1: y=x+1 \\
& \text { If } m \text { is } \mathbb{1}, c \text { is } 2: y=x+2 \\
& \quad \begin{array}{l}
m=\text { gradient } \\
c=y \text { intercept, when } \\
x \text { is zero (zero term) }
\end{array}
\end{aligned}
$$

AG: Balancing Stacks 1

AG: Balancing Stacks 1/2

Add 2 to each side

${ }^{\text {w/It still ballances }}{ }^{[m}$

"|t still balances! ${ }^{m}$

AE: Balancing Stacks

(5) St. Luke's C: of E. Primary School

AG: Balancing Stacks 4

AH: Balancing Equations 1a

AH: Balancing Equations 1b

8t. Luke's C. of E. Primary School

AH: Balancing Equations 1c

$\underset{20}{\mathbf{A}} \mathbf{H}$: Balancing Equations

 ©

AH: Balancing Equations 2b

St. Luke's C. of E. Primary School

AH: Balancing Equations

St. Luke's C. of E. Primary School

AH: Balancing Equations 3/4

8t. Luke's C. of E. Primary School

AH: Balancing Equations 5a

$(10 \times \triangle)+4=80=$

AH: Balancing Equations 5b

$(20 \times \triangle)+30=90=(10 \times \square)$

AH: Balancing Equations 5c

$5 n+10=58-n$

AH: Balancing Linear Equations 6a

 Algebraic Notation

 Algebraic Notation}

$$
\begin{aligned}
5 c+4 & =4 c+12 \\
5 c-4 & =4 c+8 \\
5 c & =-4 c \\
c & =8
\end{aligned}
$$

$\underset{6 b}{\mathbf{A} H: ~ B a l a n c i n g ~ L i n e a r ~ E q n s . ~}$

(8)

St. Luke's C. of E. Primary School

AH: Balancing Linear Equations

 $6 c$
Algebraic Notation

$$
\begin{aligned}
5 x+6 & =22+x \\
-x & =6 \\
4 x+6 & =22 \\
-6 & =6 \\
4 x & =16 \\
\div 4 & =4
\end{aligned}
$$

AF: Balancing Linear Egins.

(6) St. Luke's C. of E. Primary School

AH: Bolancing Linear Equations $6 e$

 Algebraic Notation

 Algebraic Notation}

AH: Bolancing Linear Equations $6 f$ Bar Model

$\underset{6_{9}}{\mathbf{A}} \mathbf{- 1}$: Bolancing Linear Equations

$\underset{\text { Ah }}{\mathbf{A}} \boldsymbol{H}$: Bolancing Linear Equations

$$
5 e-3 \equiv 3 e+5
$$

Al: Formulae (Perimeter) 4a

©

Al: Formulae (Perimeter) 4b

(\%)
A|: Formulae (Perimeter) $4 c$
\times

Al: Formulae (Area) $\begin{gathered}b=\text { bege } \\ h=h i b t h\end{gathered}$
5

Area of a Rectangle $=\mathrm{b} \times \mathrm{h}$

$$
\text { Area }=6 \mathrm{~cm} \times 8 \mathrm{~cm}=48 \mathrm{~cm}^{2}
$$

(.)

Area of a Triangle $=\frac{1}{2} \times b \times h$

$$
\begin{aligned}
& b=6 \mathrm{~cm} \\
& h=8 \mathrm{~cm} \\
& \quad \text { Area }=0.5 \times 6 \mathrm{~cm} \times 8 \mathrm{~cm}=24 \mathrm{~cm}^{2}
\end{aligned}
$$

Al: Formulae (General)

5/6

$a+b$

Al: The Pi (π) you can't eat!

6

π (Pi) is the ratio of a circle's circumference to its diameter!
$\boldsymbol{\pi}=\frac{\text { circumference }}{\text { diameter }}$

Circumference $=\mathbf{3 . 1 4 1 5 9 2 6 5 3 5 9 0} \times$ Diameter

diameter	diameter	diameter	
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0 . 1 4 . .}$

Area of a Circle $=\pi x \|^{\prime \prime} x^{\prime}=\pi r^{2}$
Circumference of a Circle $=\mathbf{2} \pi r^{r}=\boldsymbol{\pi} d$

```
radius = 直 x diameter
```


AJ: Algebra Word Problems 5/6a
Suppose there are y sheep on a bus: At
a bus stop n more sheep get on the bus.
How many sheep are now on the bus?

Answer: y + n

©
St. Luke's C. of E. Primary School

AJ: Algebra Word Problems 5/6b

 A plece of wood is $\mathbf{2 5} \mathbf{c m}$ long.
How much remains after || cut off a piece with length xcm ?

Answer: 25 - x cm

25 cm

X
 25-x cm

AJ: Algebra Word Problems 5/6c
A brick weighs w kg.
How much do six bricks weigh?

Answer: 6w

AJ: Algebra Word Problems 5/6d
A prize of x is shared equally between you and four others.

How much does each person recieve?

(3) St. Luke's C. of E. Primary School

AJ: Algebra Problem Solving 5/6e 4 football teams werr in a lleague together", and played - each other once. How many fixtures were there?

Each team can't play themselves. Home and
Away fixtures for n teams: in $x(n=\mathbb{D}) \equiv \mathbb{n}(n=\mathbb{D})$

Each team plays each other once. Total fixtures for in teams:

$$
\frac{n \times(n-\mathbb{D})}{2} \equiv \frac{n(n-\mathbb{D})}{2}
$$

